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Abstract The influence of atomic movement on the electron scattering is calculated 
in a cumedwave theoly. The coniribution in the angular momentum represenlation of 
the Green function can be split off into the D e b p W U e r  faaor  lor me plane-wave 
scattering and a cum&-wave correction. The additional term can be used to correct the 
expressions for the fine s tmtu re  in the x-ray absorption spectra or for the angle resolved 
photoelectron diUraction r e ~ u l u  are applicable lo all approximative expressions for 
these properties. As a main mul l  due to the thermal movement of the atoms the 
elements of the t-matrix, t t ,  have to be replaced by tTD = tt + li2.&& where t is a 
modified t-mairk. t and f have a d m e n t  kdependence. The consequence is a shift in 
the peaks of the absolute value of the Fourier-transformed SpcclNm. For nickel we get 
a shift up to 0.1 au in the single scattering expression for the Brst nearet  neighbour. 

1. Introduction 

The Debyemller faaor (DWF) (Debye 1930) was introduced to describe the influ- 
ence of thermal vibrations on the elastic x-ray scattering from solids. It contains the 
average square atomic displacement (d) and was successfully used to describe the 
temperature dependence of the measured structure factors. On the other hand the 
thermal vibration also influences the x-ray absorption fine structure (XAFS) (Beni and 
Platman 1976, R o  1986). In the latter case it is important that the relative phase 
of the primary and the scattered electron wave is changed by the movement of the 
emitter & and the scatterer RI. The average relative atomic displacement ( ~ 2 ~ )  
determines the DWF. 

High-accuracy intensity measurements indicate that a more detailed investigation 
of the influence of thermal motion can give additional information. Going beyond 
the rigid-atom approximation, partial DWF were calculated for different atomic shells 
(Buyers er al 1968, March and Wdkins 1978, Reid 1979, Deutsch et a1 1989). Fur- 
thermore, anharmonic contributions to the mean square displacement were included 
(Shukla and Hiibschle 1989, Shukla and Plint 1989, Wenzel er ai 1990, Stern et ai 

In the expression for the x-ray absorption fine structure, curved-wave corrections 
appear (Lee and Pendry 1975, Muller and Schaich 1983, Fritzsche and ReMert 1984, 
Barton and Shirley 1985, Fritsche and Rennert 1986) because we have a local electron 
source inside the solid instead of an incident plane wave. The curved-wave correc 
tions give an additional contribution to the DWF. Brouder (1988) investigated these 
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contributions for the static part of the DWF for a given radial distribution, g( T ) ,  within 
the curved-wave approximation of Miiller and Schaich (1983) for single scattering. 

We investigate the DWF in the general spherical-wave theory of Lee and Pendry 
(1975) in the single-scattering and multiple-scattering terms of the XAFs expression 
and also in the angular-resolved photoelectron difbaction. The result is transferable 
to all curved-wave approximations. In section 2 we review the basic formulae. In 
section 3 we derive an expression for the propagator, which includes the atomic 
vibrations. It is shown that it can be reinterpreted as a modified scattering matrix. It 
is discussed for single scattering in detail in section 4. In section 5 some multiple- 
scattering loops are discussed and in section 6 numerical results are presented. 

2. Basic formulae 

The absorption coefficient in the oneelectron picture 

and the photoelectron wave function 

+ ( T )  = / d 3 r '  G(r , r ' ,  E; + hu))w(r')$;(r')  (2) 

contain the Green function, G, of the system, which depends on the position of the 
atoms, R, and their scattering properties t , .  +; is the initial core state and w ( r )  
is the perturbation by the photon. In the dipole approximation it is proportional to ~. ~. 

P ' ephoton Or ' ephoto,n- 
The Green function in (1) and (2) can be Hlitten as (Lee and Pendry 1975, 

Rennert and ChassB 1987) 

The difference between (3) and (4) is due to the position of the variable r; in (1) 
it is near the emitter at R,, and in (2) it is far away in the spectrometer. G, is the 
atomic Green function, whereas G, is the free propagator. In the local description 
the total scattering matrix T is a sum over single- and multiple-scattering processes 

7; In the single-scattering term we have the restriction R, # R,,. 4 is the phomabso 
tion site. In the second contribution the restriction is R,, # # R, # R, for T 
and 4 # R, # R, for T@), respectively. In the angular momentum representation 
we rewrite (3) as 
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+ I  is a solution of the radial Schmdinger equation (in the muffin-tin picture) and YL 
is a spherical harmonic with L I ,  m. Z and d are unit vectors. The expression 

1 x ( - ik) ty  GL,L(R, - 4) + . . . (7) 

contains the atomic scattering matrix elements tl  = - ( l /k)s in~5~exp( i6~)  and the 
coefficients GL,L(R). They appear, if a spherical wave 

is expanded around another centre (Lee and Pendry 1975, Rennert and C h a d  1987). 

3. Inclusion of atomic vibrations 

Now we consider atoms at T~ 

rR = R +  uR (10) 

which move around its position R We calculate the influence of this movement. Usu- 
ally it is characterized by a Debyehhller factor (DWF). If we describe the movement 
by phonons, then 

where U is a sum over contributions to different wave numbers q and polarizations 
U. In the adiabatic approximation we have to consider expressions (7) and (9) with 
positions T~ instead of R Using (9) again 

x / dR YL( e)Y;, ( e )  Yz,, ( e )  

x / dR‘ YA,, (e‘)Yi, (e’)Y,,, (e‘) dR YL( e)Yi, (e)Yi,,( e )  J 
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and the plain wave expansion 

we get 

GL,L( R + U) = E47""'+"-'h{A)( kR)Y,',,( it) / dC2 YL(e)Y&( e)YL,,( e)eixu'= 
L" 

(13) 

G,,,(-R - U) = C4ai1-"+l"hjj;)(kR)Yt,,(R) 1 dn Y'(e)YZ,(e)YL,,(e)eiku'=. 
L" 

(14) 

The parity YL(-e) = (-l)'YL(e) was used. If we restrict the considerations to a 
radial movement, U 11 R 11 e, then (13) reduces to equation (A19 in the paper of 
Brouder (1988). Using (13) and (14) instead of (9), the atomic movement can be 
included into the expression for XAFS (1) and angle-resolved photoelectron ditfraction 
(2) in the single-scattering and multiple-scattering terms of the curved-wave theory. 

In the plane-wave approximation the Hankel function is approximated by h , ( z )  = 
i-'h,,(z) and (13) reduces to 

GL,,( R + U) = 4m''YZ,( R)hc)(  kR)i-"YL,( h)dLu'eR. (15) 

We get the DWF in the plane-wave approximation from averaging the factor 
exp (2 iku .  eR),  which appears in (1). 

4. Single-scattering expression 

We start from the expression in (7). The abbreviations Rij = Ri - It,, e j j  = 
R . .  /R.. and uij = uR. - u ~ ,  are used. Sometimes we cancel the indices altogether. 
We insert (13) and (14) and get 

8 1  1) 

~ G L ~ L ~ ( - R ) ( - i k ) f . ~ G L ~ L ( R )  = ~ ~ 4 n i ' L - r ' + ' ' '  
LI L,  L" 

Due to the atomic movement we have to average the factor 
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and we restrict the expansion to the second moment. 

(U",,,) is independent of v. We get ((el-ulo)z) = ((e2-ulo)2) = 
( e 2 .  ulo)) = el * e,u& with 

In an isotropic Debye model we can sum over the polarization. The mean value 
and ((el -q0) 

do= C ( u ; ) ( l - c o s ( q . R ) ) .  
P 

The thermal average reduces to 

(eiblo'(e*+el)) = exp[-k2u&,(l +e,.e,)] = e ~ 2 " 1 " ~ ~ ( l + k 2 u ~ , ( l - e l ~ e , ) + ~ ~ ~ ) .  

(19) 

The term containing 1 - el . e2 describes the curved-wave corrections. In the plane- 
wave approximation we have only contributions for e, = e, = et,, and 1 - e, . e, 
vanishes. Therefore we include only the lowest order of I-e,-e, into the CuNed-WaVe 
corrections. 

Now we rearrange (16) for the curved-wave correction in (19),.lookhg at the sum 
over L, (writing L instead of L,) 

L 

withC=el.e,andusing(2Z+1)CPl = ( I + l ) P l + l + l P l - l .  Thefactor l -e , -e ,  
can be included by introducing a modified t-matrix with elements 

(21) 
1 

tl = 21+1Pt1-, + (21 + 1111 + ( 1  + 1)t,+d. 

Thus, due to the thermal vibration (19) we have the usual DWF exp ( -2k2a&,) and 
modified scattering properties described by 

(22) tT" = t l  + k 2 ul,tl. 2 -  

This is the main result of the paper. 
In the curved-wave theory we have a scatterer at the position R + U, which 

produces a scattered wave with angular momentum 1. It is decided by a scatterer at 
the position E, which produces a scattered wave with angular momentum 1 and I f  1. 
If we include higher-order terms in (19) we get additional I values. 

This result was developed in tbe general angular momentum expansion (5) (Lee 
and Pendry 1975). Thus, it can also be used for all approximate expressions (Muller 
and Schaich 1983, Fritzsche and Rennert 1984, Barton and Shirley 1985, Fritsche 
and Rennert 1986). A scattering amplitude f calculated with instead of t  has the 
property f ( ~ )  = 0, in accordance with the statement that the correctionvanishes in 
the plane-wave approximation. 
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5. Multiple-scattering expressions 

We do not write down the contributions to the DWF in detail, because they are 
very lengthy (even in the plane-wave approximation). Let us look at a second-order 
process, R,, -+ RI -+ & + R,,. This is a contribution in (7) containing 

GLfLAR, ,  - w ( - i k ) G y L 2 L , ( &  - R l ) ( - i k ) t p L , L ( R l  - RO). 

DWF=exp[-~k2((~z0~eg+u21~e2+ulo~e1)2)~. (23) 

Including in G the atomic vibrations (13) and (14) and averaging amrding to (17), 
we have an additional factor 

Mean square displacements like (18) appear containing trigonometric functions with 
q . (R, - R,,) , q . (R, - Rl), and q . (R, - %) instead of q . R An expansion like 
(19) is possible, but the angles ez0 ezl, eZ1 *el, and e,, . e2, appear explicitly. In the 
curved-wave corrections. e3 .  e2 and e2 . el can be included into a modified t-matrix 
(21) for both the scattering processes, but e 3 .  e, remains separate. 

We can get a simple expression for the multiple-scattering loops with shadowed 
atom, which are the most important ones. If we consider a process 

& + R I  +& R, -+ R,, With & = 2R, 

then we get an exponent (23) containing 

e., + uZl .  e3 + uZ1 *e2 + ul0 -el  = uzo - (eg + ez) + ul0 * ( e r  - e, - e2 + e , )  

(24) = Z l Z O  * (e3 + ez) 
where we used uzl = u2, - ala. A rearrangement is possible (24) and the last 
term can be neglected, because (due to the special positions in the loop) we have 
contributions for just e4 = e3 = e2 = el = elo in the plane-wave approximation. 
The movement of the atom at RI gives a higher-order correction in the curved- 
wave theory for this loop. It remains the same DWF as for the single-scattering loop 
R,, + % + R,, with the t-matrix tTD (22) only at 4. 

6. Numerical results 

We want to prove the importance of the curved-wave corrections developed in the 
preceding sections. We consider a single-scattering loop and calculate the first-nearest- 
neighbour contribution to XAFS in a nickel crystal. According to (22) we calculate 
two spectra: one is calculated with I I  and the other one with zl(21). Figure 1 shows 
the result of the calculation where the contributions are multiplied by k and k3, 
respectively. Thus, the factor k2 appearing in (22) is still included. There is an 
additional factor of 1/40 in the second contribution to give nearly the same maximum 
value. 

The most important result is the difference in the length of the oscillations. This 
length is determined by 21cR on the one hand and by the k dependence of the 
phase of the scattering amplitude on the other hand. Figure 1 shows that there is 
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Figure 1. Fir&-nearest-neighbour contribution lo ngom 2. The absolute value of the Fourier- 
XAFS for a nickel atom limes a factor k calculated The diEerence 
with t (full line). ?%e dashed line show the same 
expression caculated with t and multiplied by k3 
and a factor U40 for scaling. 

transformed spectra of figure 1. 
in the maximum position is indicated. 

a different k dependence of t and i. Figure 2 contains the absolute value of the 
Fourier-transformed spectra. Due to the mentioned k dependence of the phase, the 
position of the maximum of the Fourier-transformed spectrum differs from R (or 
2R). This has to be included if we evaluate a spectrum to determine neighbour 
distances. Neglecting the curved-wave corrections, an error of up to 0.1 au can arise 
according to the difference in the maximum position of the two curves in figure 2. 

The actual error depends on the weight of the second contribution in (22). Due to 
the above-mentioned factor of 1/40 in the considered example both contributions in 
(22) have nearly the same weight in the Fourier-transformed spectrum if40ut0 (au)-' 
is equal to one. This is the case for afo = 0.025 (au)' or a&, 0.006 A'. This is 
the order of magnitude of the mean square displacement at room temperature. 

7. Summary 

We have calculated the influence of the movement of the atoms on the Debye- 
Waller factor in a curved-wave theory for the electron scattering. In the general 
angular momentum expansion they can be expressed by a modified coefficient G,,, 
(13). It is possible to split off a Debye-Walter factor lmown from the plane-wave 
scattering. However, there remain curved-wave corrections. In the single-scattering 
expression they can be included by adding a contribution to the t-matrix, which has 
a modi6ed dependence on the phase shift and a weight containing the mean square 
displacement and a factor kZ. The curved-wave corrections can be important if the 
modified t-matrix, f, ditfers in its k dependence in comparision to t. 
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